Geographic Information System Projections

Lecture #2

Concept Summary

- A spheroid or approximation of the Earth *shape* is required to calculate a datum.
- A datum is a mathematical model that serves as a 'home base' to that may be used to calculate the coordinates of another location.
- A map projection converts a 3D spheroid into a 2D plane. (Globes versus Maps)

Summary continued...

- Projected coordinate systems are built ON a map projection.
 - These are specific grids that may be used to define a specific geographic location on the Earth's surface.
- It is important to be aware that there are many different ways to determine a geographic location!
 - Because if you run into a problem where your data do not line up as they should, it is likely that they come from 2 or more different projections...

INTERNAL PROPERTY AND ANY AND INC

1000

-

OUT & ARLESS LINES SHOT RELEASE AND THE

Geographic Information

GPS vs. GIS

People

Global Positioning System

The 24 GPS satellites -altitude of ~11,000 miles -travelling at a speed of ~7000 mph. -two full orbits in just under 24 hours

Geospatial features & attributes

Place Vegetation Geology

Eruption history

Deaths

Coordinate System Vocabulary

- Meridians = lines of equal longitude
- Parallels = lines of equal latitude
- Method of angular measure (E-W/N-S)
- (DMS) degrees, minutes, seconds

Developing a Coordinate System

Claudius Ptolemy, 140

'First' to use mathematical projection to show a round earth on a flat surface John Harrison, 1740

Issue #1 Approximation of the Earth

Datum

 Mathematical model of the Earth that serves as the reference point for calculating the geographic coordinates of a location.

Issue # 2

Types/Progressions

- Clarke 1866
- NAD27
- NAD83
- GRS80 (Geodetic Ref. System)
- WGS (World Geodetic System)

Importance

Map projections

• Transforming a sphere to into a plane...

Projection types

- <u>Conformal</u> preserves local angles and shapes
- <u>Equivalent</u> retains areas in the correct relative size
- <u>Equidistant</u> maintains scale consistency along specific lines
- <u>Azimuthal</u> retains specified/accurate directions

Aspects and projections

http://egsc.usgs.gov/isb//pubs/MapProjections/projections.html

Common map projections

- Transverse Mercator
 - Uses a standard meridian
 - Is conformal

Common map projections

• Lambert Conformal Conic... USGS Topo maps since 1957

Projected Coordinate Systems

- Or plane coordinate system is built ON a map projection!
- Designed for detailed calculations and positioning for scales of 1: 24,000 or larger
- Fractional scales...

Common Projected Coordinate Systems

Universal Transverse Mercator

State Plane Coordinate system

Public Land Survey System (plss)

- Township, Range, Section, 1/4s
- 6 by 6 miles squares
- 640 acres per section

Most data available in Iowa

- NAD_1983_UTM_Zone_15N
- Projection: Transverse_Mercator
- False_Easting: 500000.000000
- False_Northing: 0.000000
- Central_Meridian: -93.000000
- Scale_Factor: 0.999600
- Latitude_Of_Origin: 0.000000
- Linear Unit: Meter
- GCS_North_American_1983
- Datum: D_North_American_1983

GIS and Coordinate Systems

- Projections files
- Predefined Coordinate Systems
- On-the-fly projections

Conversions

