Primary Endogenic Variables
Leading to Geomorphic change




Learning objectives

* Tectonic settings — How do tectonic settings alter the types of landforms
present in different regions?

e Tectonic processes — What is the role of tectonics in shaping landscapes?

* Leading to...
* Interpreting landscape evolution as a product of tectonic events...

Grand Teton Formation Animation
e https://youtu.be/QfXfRbJFdOg



https://youtu.be/QfXfRbJFd0g

Concept 2. Geologic structures are a dominant controlling factor/variable in the
evolution of landforms and they are reflected in them.
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Time and erosion
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Geologic Structures

1. Examine the two 3D models below. Are the axial planes perpendicular to the surface
or at a different “plunging” angle? How do the two medels differ?

Direction

Syncline axis

Plunging anticline axis

Plunging syneline axis

Strike-slip fault
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level. the landscape, valleys decreases mean elevation decrease. . .

carving valleys. elevation.
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Fault Landforms

Uplifted
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Basin and Range
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The Basin and Range

physiographic province
extends from the Rocky
Mountains to the Sierra

Extension of an initial
high-elevation plateau
along sets of nested
normal faults has
resulted in a fallen-down
block structure in the
Basin and Range.
Alternating series

of down-dropped basins
and uplifted ranges
reflect rotational
deformation along a
complex set of deep-
seated regional normal
faults and resultin a
landscape of fault-
controlled, alternating
valleys and mountain
ranges.
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Superimposed
drainages are very
common in glaciatec
landscapes
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Coastal uplift &
subsidence

‘ Paleo sea-lev

Marine terraces

sea level
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Faults

Normal fault Reverse fault

Strike-slip fault

* Hanging wall
* Foot wall
* Earthquakes
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Restraining bend

"4. Thrust faults
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Shear strength Fault zone

ture (°C)

Himalaya Tibetan i kaleiv it feanl
\ Plateaii and seismici !L rheology
neicay Frictional—
i ;P":____.g-"""“* FY SEjst;C
“= Eurasian Plate _ — k)
= L 44 E F100
b,
Sy s SRS + 200
e Brittle/
Mantle E ductile

As India moved into Asia, the continental lithosphere of both The shear strength and rheology (flow
continents was not dense enough to subduct and ongoing collision characteristics) of the lithosphere vary with
resulted in crustal thickening. Over time, the crustal root grew depth due to the effects of increasing pressure
thicker and the Tibetan Plateau rose and, as the collision continues, it and temperature. In the uppermost brittle
grows wider. The thickening crust, rising mountains, and high rates crust, frictional strength increases to a depth of
of erosion affect the shape and behavior of the Himalaya. Rapid around 8 to 10 km. At higher pressures and
erosion advects warm rock toward the surface, and the thickened temperatures below about 13 km depth, shear
crust causes rock at depth to cross the brittle/ductile transition. This strength decreases and the crust becomes
change in the process and rate by which the rock deforms allows ductile, producing aseismic viscous flow.
rock to more easily and rapidly extrude out the sides of the range, Tectonic convergence that produces
removing some of the mass brought in by continental collision and exceptionally thick crust can lead to lateral

limiting the height of the Tibetan plateau. flow of ductile material at depth.
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River anticline Mountain front erosion

Time 1 — before uplift

Erosion
i

5 ~¥
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_ Heavy precipitation can drive rapid

- erosion on steep mountain fronts. This
Time 2 — focused erosion can remove so much
;Z%iﬁg; mass so quickly that warm rock from =

below the range flows (advects) to the &
mountain front in response to erosion. &
The end result is that erosion drives eSS
the movement of rock and can elevate SENGEESE A
rock of high metamorphic grade B i
above lower grade rock. .

River anticlines form where mountain rivers, rapidly eroding into flexurally &
weak rock, remove enough mass that they catalyze focused exhumation and &
isostatic rebound. This focused rock uplift, driven by differential erosion,
deforms rock, creating anticlines that run beneath some major rivers.



Base level fall

Base level rise

(fluvial incision) Affects the Graded Stream (aggradation)
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Channel reaches above
the active knickpoints
remain graded to the

original base levels.

Base level fall steepens river slopes at the basin
outlet, sending a knickpoint propagating
upstream at a rate proportional to the upstream
drainage area. Knickpoints can either maintain
their relief or diminish as they propagate
upstream.

Time 3
Continued
base  Foreset beds
level rise Topset beds

|

Subsequent rises in
base level shift the
locus of deposition
farther inland.

The influence of a rising base level shifts the
locus of sedimentation inland, predominantly
affecting estuarine and lowland river systems.
The direct influence of a base level rise is
restricted to aggradation in the downstream end
of a river system as the system adjusts.



o Upwarped beds
Anticlinal ridge behind thrust

Geomorphology +
Geochronology = uplift rates
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Dry Hills Trench South OSL ages

DH1 14.0+1.5ky DH5 28.0+2.7 ky
—— DH2 18.0+18ky DH6 28.7+2.9 ky
Bk soil horizon DH3 9.9+1.1ky  DH7 26.2+3.2 ky
DH4 5.8+1.2 ky
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