Mass Wasting and Hill-slopes

Mass wasting

- Is a collective term addressing all down slope movements of weathered rock (soil) that are created by gravitational forces.
- Gravity is the primary component!
- Vocabulary
 - Colluvium
 - Solifluction (soil flow)

The Angle of Repose

- The maximum slope at which loose, cohesionless material remains stable. It commonly ranges between 33 and 37 on natural slopes.
- Dependent upon size, shape, surface roughness, angularity, of the particles
- Wallace Stegner book as well.

The Angle of Repose

Cross bedding is formed by the migration of sand waves (ripple marks or dunes) by sand particles travelling up the windward face and depositing down the leeward face Dry sand cannot support an angle of >35° from horizontal: this is termed the *angle of repose*.

Moderate amounts of water create *increased* structural integrity of sediment due to surface tension between grains. In this way slopes steeper than the angle of repose can be maintained (e.g., sandcastles). Saturation of sediment by water eliminates any structural competence. This is the condition that often leads to slope instability and mass wasting.

35°

Slope movement types

- When defining mass wasting it is necessary to include
 - 1) the type of material in motion, including its coherence and dimensions; and
 - the type and rate of movement including creeping, falling, toppling, sliding, spreading, or flowing (debris flow).

Handout

Characteristic	Landslide Deposits	Glacial Deposits (till)	Fluvial Deposits (coarse)	
Sedimentology				
Sorting	Very poor	Very poor Variable, generally good		
Roundness	Angular	Moderately rounded	Rounded	
Grain size	Variable, may be large	Variable, may be large	Generally finer-grained	
Fabric	Generally lacking	Generally lacking	Imbricated	
Composition	Local, monolithologic	Variable, extrabasinal	Variable, within basin	
Stratification	None	None to poor	Well-layered	
Transport process	Creep, sliding	Ice	Tractive-bedload	
Morphology				
Internal forms	Transverse ridges	Sinuous moraines	Lacking ridges	
Surface relief	Hummocky	Hummocky	Organized bedforms	
Drainage	Poor, undrained sags	Poor, undrained sags	Well-drained	
Head region	Scarp, local	None or cirque	None	
Profile	Convex-up surface	Irregular Concave-up longitudinal		
Valley form	None specific	U-shaped None specific		
Lateral associations	Source region upslope	Downstream outwash and loess	Downstream-fining fluvial deposits	

Table 4.11Distinguishing Landslide Deposits from Coarse-Grained Sediments Deposited by Glacial and
Fluvial Processes

Creep

- Barely perceptible down slope movement.
- Particle creep, individual particle movement due to wetting/drying, heating/cooling
- Soil creep, dependent on changing SMR and climates.

Creepy drawing

Expansion

caused by

freezing

Contraction during thaws

Creep (or soil creep) works at a pace of mm/yr. It is generally related to (seasonal) wet-dry or freeze thaw changes.

Fall

 A *fall* is a mass movement where singular or multiple blocks of rock plunge from a height.

Yosemite, CA

Looks like an ideal place for a rock fall or a rock slide, thanks to exfoliation of granite batholiths.

Yosemite

- A rock fall in this area in July, 1996, had rather amazing consequences.
- A single granite block weighing ~200 tons broke free and disintegrated upon impact.
- The burst of air from the impact flattened some 2000 trees and the area was showered with dust from the obliterated boulder.
- Only one person was killed

Topple

 Large joint bounded sheets or blocks, slowly creep or lean outward until they become unstable and topple over or slide down hill.

Slide

• A *slide* is a mass movement that occurs as one unit.

Plummer/McGeary/Carlson Physical Geology, 8e. Copyright @ 1999, McGraw-Hill Companies, Inc. All Rights Reserved.

Flow

 A *flow* is a mass movement that is internally chaotic and turbulent. What begins as a slide may become flow as it moves down slope and disaggregates. Plummer/McGeary/Carlson Physical Geology, 8e. Copyright © 1999, McGraw-Hill Companies, Inc. All Rights Reserved.

MECHANISM		MATERIAL Rock	Fine-grained Sou	Coarse-grained Soli	Velocity
SLIDE		SLUMP	Earth Slump	Debris Siump	SLOW
		Block glide	Earth slide	Debris slide	RAPID
FLOW		Rock avalanche	Mudflow, avalanche	Debris,flow, avalanche	Very Rapid
		Сгеер	Сгеер	Сгеер	Extremely slow

The physics of mass wasting Stress Vs. Strain

The physics of mass wasting Stress Vs. Strain

 Normal stress (σ_n) (γh cos² θ)

 Shear stress (σ_s) (γh sin θ cos θ)

- Shear strength (σ_r)
 - Cohesion (c)

Mass friction (σ tan φ) Navier-Coulomb criterion
Principle of effective stress
(shear strength, s = c' + σ' tan φ')
Accounts for dx/dy of pore water pressure

Resisting Forces (Shear Strength)

- Forces that act to maintain slope stability
 - 1. Cohesion
 - 2. Effective normal stress
 - 3. Friction

Factors that tend to decrease shear strength

- Weathering, reduces cohesion
- Pore water, an increase in the amount of pore water present will increase the internal pressure within a mass of sediment, leading to instability.
- Structural or human induced changes.

Table 4.5 Factors That Influence Stress and Resistance in Slope Materials

Factors That Increase Shear Stress	Factors That Decrease Shear Strength			
Removal of lateral support	Weathering and other physicochemical reactions			
Erosion (e.g., rivers, ice, waves)	Disintegration (lowers cohesion)			
Human activity (e.g., quarries, road cuts)	Hydration (lowers cohesion)			
Addition of mass	Base exchange			
Natural (e.g., rain, talus)	Solution			
Human (e.g., fills, ore stockpiles, buildings)	Drying			
Earthquakes	Pore water			
Regional tilting	Buoyancy			
Removal of underlying support	Capillary tension			
Natural (e.g., undercutting, solution, weathering)	Structural changes			
Human activity (e.g., mining)	Remolding			
Lateral pressure	Fracturing			
Natural (e.g., swelling, expansion by freezing, water addition)				

(After Varnes 1958)

Examples of Catastrophic Mass Wasting

- Economic impact
 - Agriculture
 - Roadways
 - Mining
- Deaths

Nevado Huascaran, Peru, 1970

- It began high in the mountains as an earthquake-induced avalanche of snow and ice, but picked up glacial sediment on its way.
- It hit the towns of Yungay and Ranrahirca, 18 km away, at around 150 km/hr. The former town was completely buried.
- An astounding 66,000 people were estimated dead as a result of this massive debris avalanche.

The landslide destroyed major highway and rail line, and also dammed the Spanish Fork River, flooding out the town of Thistle.

Slide Mountain, NV, 1985

Slide-Induced Flooding

(a) Before slide

Lake formed - behind dam _____ Slide scar

(b) After slide

Debris of slide fills valley floor, dams river

Slide-Induced Flooding

(c) After dam is breached

Mamayes, Puerto Rico, 1985

- This landslide was aided by the direct pumping of sewage into the ground.
- * Killed >129, the most ever for a landslide in North America

Kelso, WA June, 2000

 Landslides cost over \$2 billion annually in the US, and take 25-50 lives.

Could this have been prevented?

Yes

- Early warning signs
- Indoors: popping nails, cracking plaster, water seepage, sticking doors and windows

 Outdoors: cracking pavement and foundations, slump formation, broken pipes, leaning trees

Damn!

Stabilizing slopes **Mass Wasting Prevention** Water trapped in soil causes movement, pushing down retaining wall. Water drains through pipe, allowing wall to to keep slope from moving.

Safe and Hazardous Road Cuts

Points to Remember

- Eliminate oversteepened surfaces (use terraces)
- Pay attention to structure in rock/soil
- Avoid the avoidable: don't build in areas where slopes have long history of failure

Rock fall protection

Fences

Highway protection

PHOTO: LESLIE HOLTZMAN

Underwater Mass Movements

•Various subaqueous mass movements affect large areas of the seafloor and are probably as common as those on land.

Vast subaqueous slumps and flows flank the island of Hawaii. Arrows show direction of flows.

A subaqueous landslide off of the coast of Oregon formed when tectonic activity made the slope too steep.

Active near deltas and convergent plate margins where sediment accumulates rapidly and slopes are steep.

